Lattice Paths and Rogers Identities

نویسندگان

  • Ashok Kumar Agarwal
  • Megha Goyal
چکیده

Recently we interpreted five q-series identities of Rogers combinatorially by using partitions with “n + t copies of n” of Agarwal and Andrews [1]. In this paper we use lattice paths of Agarwal and Bressoud [2] to provide new combinatorial interpretations of the same identities. This results in five new 3-way combinatorial identities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Overpartitions, lattice paths, and Rogers-Ramanujan identities

Abstract. We extend partition-theoretic work of Andrews, Bressoud, and Burge to overpartitions, defining the notions of successive ranks, generalized Durfee squares, and generalized lattice paths, and then relating these to overpartitions defined by multiplicity conditions on the parts. This leads to many new partition and overpartition identities, and provides a unification of a number of well...

متن کامل

/ 94 08 13 6 v 1 2 5 A ug 1 99 4 Exceptional structure of the dilute A 3 model : E 8 and E 7 Rogers – Ramanujan identities

The dilute A3 lattice model in regime 2 is in the universality class of the Ising model in a magnetic field. Here we establish directly the existence of an E8 structure in the dilute A3 model in this regime by expressing the 1-dimensional configuration sums in terms of fermionic sums which explicitly involve the E8 root system. In the thermodynamic limit, these polynomial identities yield a pro...

متن کامل

An Extension to Overpartitions of the Rogers-ramanujan Identities for Even Moduli

We study a class of well-poised basic hypergeometric series J̃k,i(a;x; q), interpreting these series as generating functions for overpartitions defined by multiplicity conditions on the number of parts. We also show how to interpret the J̃k,i(a; 1; q) as generating functions for overpartitions whose successive ranks are bounded, for overpartitions that are invariant under a certain class of conju...

متن کامل

An extension to overpartitions of Rogers-Ramanujan identities for even moduli

An extension to overpartitions of Rogers-Ramanujan identities for even moduli Sylvie Corteel1, Jeremy Lovejoy2 and Olivier Mallet3 1CNRS, LRI, Bâtiment 490, Université Paris-Sud, 91405 Orsay Cedex, FRANCE 2CNRS, LIAFA, Université Denis Diderot, 2, Place Jussieu, Case 7014, F-75251 Paris Cedex 05, FRANCE 3LIAFA, Université Denis Diderot, 2, Place Jussieu, Case 7014, F-75251 Paris Cedex 05, FRANC...

متن کامل

A Bailey Lattice

We exhibit a technique for generating new Bailey pairs which leads to deformations of classical q-series identities, multiple series identities of the Rogers-Ramanujan type, identities involving partial theta functions, and a variety of representations for q-series by number theoretic objects like weight 3/2 modular forms, ternary quadratic forms, and weighted binary quadratic forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011